RFOFO Ring Status in GEANT

```
R. Godang, D. Summers, L. Cremaldi (Mississippi)
R. Raja, S. Geer, Z. Usubov (Fermilab)
R. Palmer, R. Fernow, S. Berg, J. Gallardo (BNL)
```

- RFOFO Ring Overview
- Motivation
- GEANT Simulation
 - Geometry and Material
 - Constant Magnetic Fields
 - GRID Magnetic Fields
- Interpolation Method
- Magnetic Fields Study
- Conclusions

MUCOOL Meeting October 21, 2002 Berkeley Lab, CA

RFOFO Ring Overview

• We simulate the RFOFO ring based on ICOOL version 2.40 with useful information from Bob Palmer and Rick Fernow

- The ring is about 33 m in circumference It has 12 cells and each cell is 2.75 m long
- The overall dipole field for bending is 0.125 T

RFOFO Ring Overview

• 1 cell = half wedge + 6 RFs + half wedge The alternating solenoid coils are located outside pillbox RF cavities

- RF freq.= 201.25 MeV; Gradient = 16 MV/m
- The wedge is made of liquid hydrogen with a full angle $\alpha = 77^{\circ}$ at the vertex

Motivations

- ICOOL works in different ways as GEANT
 In a straight channel ICOOL models
 the solenoid as a current sheet without any
 direct rotation as in GEANT
- GEANT is able to rotate the field for a ring then do a linear GRID map interpolation I will show it later
- GEANT should tell us the exact coil angle and tilts that generate the required fields
- It always good to have a redundant simulation for a crucial part of an experiment

Geometry and Material

• Geometry and material in GEANT = ICOOL

Vertex Position of Single Particle

• Applied Constant Fields:

Constant Fields Rotation in GEANT

- Can GEANT rotate the fields by itself?
 - Applied constant fields (0.125 Tesla) into one cell
 - Let GEANT rotates the fields by itself
 - Locate μ^+ (200 MeV/c) at z=531 cm

 \implies The μ^+ still follow a closed orbit!

Did GEANT Rotate the Fields Correctly?

• Locate μ^+ at z=300 cm and x=200 cm

 \longrightarrow Indeed μ^+ does not follow a closed orbit!

GRID Magnetic Fields

- We implemented GRID map into GEANT then do interpolation \Longrightarrow GRID Fields Map
- GRID fields map along arc length:

GRID Magnetic Fields

- Fields map output from GEANT is very well match with BIOT fields \Longrightarrow a cross check
- GRID fields map along axis :

Interpolation Method

- We do check the interpolation method when GEANT read the GRID map \Longrightarrow Fields map
- Fractional difference of True GRID Fields

• dbx=(BX-bx)/BX; dby=(BY-by)/BY; dbz=(BZ-bz)/BZ

Magnetic Fields Study

- BIOT-Savart fields is done by Lucien and Don BSHEET (ICOOL) is done by Rick and Juan
- Bx fields comparison between BSHEET and BIOT (Integral Method) ⇒ GEANT

Bs Fields Comparison of BSHEET-BIOT

• BSHEET-BIOT Bs fields match very well

By Fields comparison of BSHEET-BIOT

• There is still a large discrepancy of By that need to understand \Longrightarrow in progress

Conclusions

- GEANT rotates the fields map correctly
 It is very good feature from GEANT
- GEANT produces consistent fields map output by doing a correct interpolation routine
- The CODE has installed into CVS repository in Fermilab, thanks to Raja for his help
- The discrepancy between BIOT-BSHEET in By fields is under studying
- We are studying the RFOFO RF tunning